
W W W . R E F R A C T I O N S . N E T

Secrets of the JTS Topology SuiteSecrets of the JTS Topology Suite

Martin DavisMartin Davis
Refractions Research Inc.Refractions Research Inc.

W W W . R E F R A C T I O N S . N E T

Overview of presentationOverview of presentation

• Survey of JTS functions and components
• Tips for using JTS as an engine for

processing Geometry
• Tips for using JTS components and APIs

for spatial algorithm development
• Future Enhancements

W W W . R E F R A C T I O N S . N E T

Overview of JTSOverview of JTS

• Java API for modeling & manipulating planar
linear vector geometry
– License: LGPL

• Development History
– Version 1.0 - May 2001
– Version 1.8 - December 2006
– Version 1.9 – Q4 2007

• Clients:
– JUMP, GeoTools (uDig, GeoServer), eXist, etc.
– (as GEOS) PostGIS, FME, OGR, MapServer, MapGuide

Open Source, etc.
– (as NTS) monoGIS, SharpMap, etc?

W W W . R E F R A C T I O N S . N E T

JTS as a Geometry EngineJTS as a Geometry Engine

• Geometry types
• Point, MultiPoint, LineString, MultiLineString,
Polygon, MultiPolygon, GeometryCollection

• Geometry methods
• Spatial Predicates, relate()
• Overlay ops, buffer(), convexHull()
• Metrics: area(), length()
• distance(), withinDistance()

• Geometry Processing
• Line Merging
• Noding & Polygonization
• Simplification
• Linear Referencing

W W W . R E F R A C T I O N S . N E T

Geometry Operation ClassesGeometry Operation Classes

• Most non-trivial Geometry methods are
implemented as classes

• Often classes provides extra functionality
• Examples:

– DistanceOp can return two closest points
– IsSimpleOp can return location of non-simplicity
– IsValid gives option to check for SDE-style polygon

topology
– RelateOp allows BoundaryNodeRule to be

specified

W W W . R E F R A C T I O N S . N E T

• How boundary points of linear geometries are
determined
– OGC-SFS specifies “Mod-2” Rule

• Other rules sometimes useful
– All Endpoints

• Ex: Do roads touch only at nodes?

– Monovalent Endpoints
– Multivalent Endpoints

• RelateOp class allows specifying rule to use

Spatial Relationships & Boundary Node Spatial Relationships & Boundary Node
RulesRules

W W W . R E F R A C T I O N S . N E T

• OGC-SFS spatial predicates have some subtle
behaviour

• contains() : Polygons do not “contain” their
boundary!
– A & B : contains()==true
– C : contains()==false

• JTS provides covers() and coveredBy() ,
which treat boundary and interior identically

• Side benefit – easier to optimize
– e.g. <rectangle>.covers()

Additional Spatial PredicatesAdditional Spatial Predicates

W W W . R E F R A C T I O N S . N E T

Optimized Spatial PredicatesOptimized Spatial Predicates

• Spatial query / join is common use pattern
– i.e. repeated predicate operation on same geometry

• PreparedGeometry improves performance
– Uses caching, algorithm optimizations
– Over 100x faster in some cases!

• Currently provides most important predicates
– intersects, contains, covers

• New in JTS 1.9

PreparedGeometry targetPrep
= PreparedGeometryFactory.prepare(targetGeom);

for (<geometries to test>) {
Geometry test = ...
if (targetPrep.intersects(test)) {
...

W W W . R E F R A C T I O N S . N E T

LineString LineString NodingNoding, , PolygonizationPolygonization

• Problem: Node & Dissolve a set of LineStrings, then
Polygonize

W W W . R E F R A C T I O N S . N E T

LineString LineString NodingNoding, , PolygonizationPolygonization contcont’’dd

• Trick: to node & dissolve, combine
LineStrings into a MultiLineString, then
union them with a Point from one of the
lines

• Noded lines can be polygonized using the
Polygonizer class

• New in JTS 1.9: Geometry.union()

Collection lines = ...
Geometry mls = geomFactory.buildGeometry(lines);
Point mlsPt = geomFactory.createPoint(mls.getCoordinate());
Geometry nodedLines = mls.union(pt);

W W W . R E F R A C T I O N S . N E T

Polygon Union using buffer(0)Polygon Union using buffer(0)

• Merging a large set of Polygons using
repeated polyUnion.union(poly)
can be slow

• Trick: combine Polygons into a
GeometryCollection, then compute
gc.buffer(0.0)

• Warning - doesn’t work for non-
polygonal features!

• New in JTS 1.9: Geometry.union()

W W W . R E F R A C T I O N S . N E T

Polygon Cleaning using buffer(0)Polygon Cleaning using buffer(0)

• Polygons from external data sources
can be invalid because of self-
intersections or overlaps

• Trick: computing buffer(0.0)
removes pinch-offs, merges
overlapping polygons

• It would be nice to have more control
over cleaning behaviour!

• Future: PolygonRectifier

W W W . R E F R A C T I O N S . N E T

Geometry SimplificationGeometry Simplification

• Two types
– DouglasPeuckerSimplifier

• standard Douglas-Peucker
• Faster, but does not preserve topology

– TopologyPreservingSimplifier
• Slower, but preserves topology (lines will not cross,

holes are preserved)

• Not Geometry methods – use classes directly

W W W . R E F R A C T I O N S . N E T

JTS as an algorithm libraryJTS as an algorithm library

• JTS contains many algorithms and components
for building spatial algorithms & processes
– Fast Point-in-Polygon
– Robust Line-Point orientation, Ring orientation
– Line segment intersection detection & computation
– Spatial indexes (and MonotoneChain)
– Indexed Noding & Intersection detection for line

arrangements
– PlanarGraph package
– Primitive Geometric objects & methods

• LineSegment, Triangle, Angle

W W W . R E F R A C T I O N S . N E T

Fast PointFast Point--InIn--PolygonPolygon

• Common use case is repeated P-I-P queries
against a fixed polygon

• This case can be optimized by using spatial
indexing

• Options:
– As component: IndexedPointInAreaLocator

• Result in {INTERIOR, BOUNDARY, EXTERIOR}
– Also PreparedGeometry.intersects(), contains()

• Uses incremental RayCrossingCounter – easy to
use over custom Ring data structures

W W W . R E F R A C T I O N S . N E T

Spatial IndexesSpatial Indexes

• Several types of spatial index available
– 2-D: QuadTree, STRtree
– 1-D: Bintree, SortedPackedIntervalRTree

• Used in many internal JTS operations to improve
performance
– Line noding
– Line segment intersection detection
– Point-in-polygon

• Often useful for improving performance of
“naive” spatial algorithms
– In theory takes O(n2) into O(n log n) !

W W W . R E F R A C T I O N S . N E T

Spatial Indexes Spatial Indexes –– STRtreeSTRtree VS VS QuadTreeQuadTree

• STRtree
– Packed R-Tree
– Cannot be modified once built (no insert or

delete)
– Fastest performance

• QuadTree
– Slower performance (but still good!)
– Supports insert & delete
– Useful for “online” algorithms

W W W . R E F R A C T I O N S . N E T

Future EnhancementsFuture Enhancements

• Polygon Fixing/Cleaning
• PreparedGeometry.intersection()
• Rectangle clipping (intersection)
• Buffer enhancements: variable-width, single-sided,

offset lines
• Geometry Smoothing, Densification
• Measures support for Linear Referencing
• Geometry.cut(Geometry)
• Topology API
• Interface-based Geometry model

– Easier to use JTS over other geometry implementations
– Coordinate interface too!

W W W . R E F R A C T I O N S . N E T

Downloads & InformationDownloads & Information

• Download JTS

http://sourceforge.net/projects/jts-topo-suite

• JTS Mailing List

http://lists.jump-project.org/mailman/listinfo/jts-devel

